14,762 research outputs found

    Probing the strange Higgs coupling at lepton colliders using light-jet flavor tagging

    Full text link
    We propose a method to probe the coupling of the Higgs to strange quarks by tagging strange jets at future lepton colliders. For this purpose we describe a jet-flavor observable, JFJ_F, that is correlated with the flavor of the quark associated with the hard part of the jet. Using this variable, we set up a strangeness tagger aimed at studying the decay h→ssˉh\to s\bar{s}. We determine the sensitivity of our method to the strange Yukawa coupling, and find it to be of the order of the standard-model expectation.Comment: 6 pages, v2 accepted for publication in PR

    Gluon and Ghost Dynamics from Lattice QCD

    Get PDF
    The two point gluon and ghost correlation functions and the three gluon vertex are investigated, in the Landau gauge, using lattice simulations. For the two point functions, we discuss the approach to the continuum limit looking at the dependence on the lattice spacing and volume. The analytical structure of the propagators is also investigated by computing the corresponding spectral functions using an implementation of the Tikhonov regularisation to solve the integral equation. For the three point function we report results when the momentum of one of the gluon lines is set to zero and discuss its implications.Comment: Proceedings of Light Cone 2016, held in Lisbon, September 2016. Minor changes in text. To appear in Few B Sy

    A Method to Tackle First Order Differential Equations with Liouvillian Functions in the Solution - II

    Full text link
    We present a semi-decision procedure to tackle first order differential equations, with Liouvillian functions in the solution (LFOODEs). As in the case of the Prelle-Singer procedure, this method is based on the knowledge of the integrating factor structure.Comment: 11 pages, late

    A unification in the theory of linearization of second order nonlinear ordinary differential equations

    Get PDF
    In this letter, we introduce a new generalized linearizing transformation (GLT) for second order nonlinear ordinary differential equations (SNODEs). The well known invertible point (IPT) and non-point transformations (NPT) can be derived as sub-cases of the GLT. A wider class of nonlinear ODEs that cannot be linearized through NPT and IPT can be linearized by this GLT. We also illustrate how to construct GLTs and to identify the form of the linearizable equations and propose a procedure to derive the general solution from this GLT for the SNODEs. We demonstrate the theory with two examples which are of contemporary interest.Comment: 8 page

    Tightening the belt: Constraining the mass and evolution in SDC335

    Get PDF
    Recent ALMA observations identified one of the most massive star-forming cores yet observed in the Milky Way; SDC335-MM1, within the infrared dark cloud SDC335.579-0.292. Along with an accompanying core MM2, SDC335 appears to be in the early stages of its star formation process. In this paper we aim to constrain the properties of the stars forming within these two massive millimetre sources. Observations of SDC335 at 6, 8, 23 and 25GHz were made with the ATCA. We report the results of these continuum measurements, which combined with archival data, allow us to build and analyse the spectral energy distributions (SEDs) of the compact sources in SDC335. Three HCHII regions within SDC335 are identified, two within the MM1 core. For each HCHII region, a free-free emission curve is fit to the data allowing the derivation of the sources' emission measure, ionising photon flux and electron density. Using these physical properties we assign each HCHII region a ZAMS spectral type, finding two protostars with characteristics of spectral type B1.5 and one with a lower limit of B1-B1.5. Ancillary data from infrared to mm wavelength are used to construct free-free component subtracted SEDs for the mm-cores, allowing calculation of the bolometric luminosities and revision of the previous gas mass estimates. The measured luminosities for the two mm-cores are lower than expected from accreting sources displaying characteristics of the ZAMS spectral type assigned to them. The protostars are still actively accreting, suggesting that a mechanism is limiting the accretion luminosity, we present the case for two different mechanisms capable of causing this. Finally, using the ZAMS mass values as lower limit constraints, a final stellar population for SDC335 was synthesised finding SDC335 is likely to be in the process of forming a stellar cluster comparable to the Trapezium Cluster and NGC6334 I(N).Comment: 10 pages, 5 figures. Accepted for publication in A&

    A solvable model of the evolutionary loop

    Full text link
    A model for the evolution of a finite population in a rugged fitness landscape is introduced and solved. The population is trapped in an evolutionary loop, alternating periods of stasis to periods in which it performs adaptive walks. The dependence of the average rarity of the population (a quantity related to the fitness of the most adapted individual) and of the duration of stases on population size and mutation rate is calculated.Comment: 6 pages, EuroLaTeX, 1 figur
    • …
    corecore